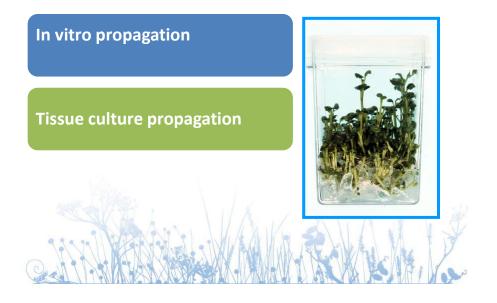



Micropropagation

 Rapid clonal in vitro ("in glass") propagation of plants from cells, tissues or organs cultured aseptically on defined media contained in culture vessels maintained under controlled conditions of light and temperature


Student Learning Objectives

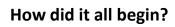
- Recite the plant tissue culture principles and concepts related to the commercial micropropagation, specifically by shoot culture
- Outline the critical procedures to successfully optimize each micropropagation stage in a commercial laboratory setting

Micropropagation

MICROPROPAGATION

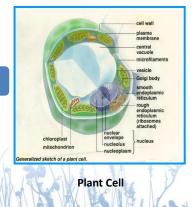
Small propagule Aseptic conditions Controlled environment Heterotrophic growth Rapid multiplication Greater initial costs

MACROPROPAGATION


Larger propagule Non-aseptic conditions Less environmental control Photoautotrophic growth Slower multiplication Nominal costs

Plant Tissue Culture: Historical Perspective

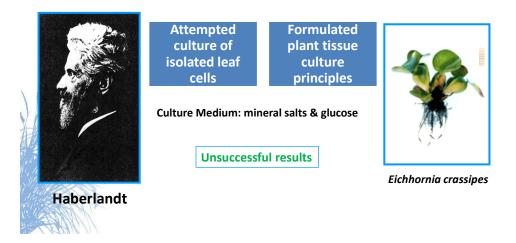
Historical Perspective


Schleiden 1838 Schwann 1839

Cell Theory

Cell is the basic unit of life

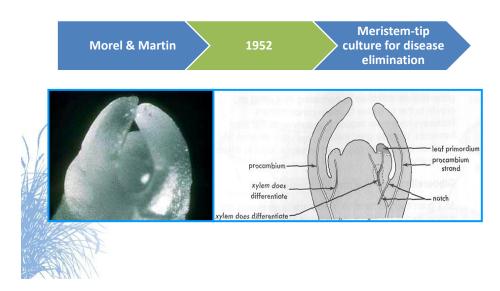
Totipotency Concept

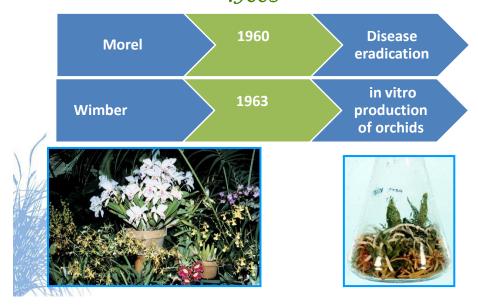

• Each living cell of a multicellular organism should be capable of independent development if provided with the proper external conditions

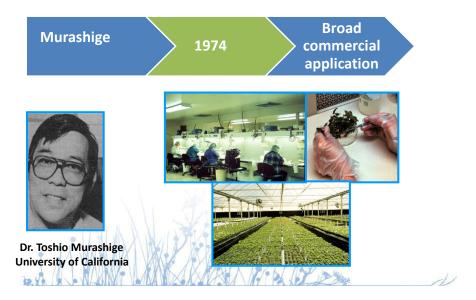
In Vitro Culture: Carly Attempts

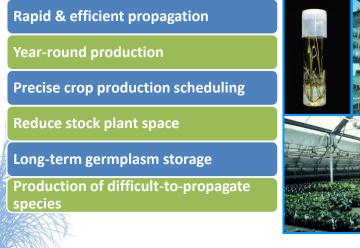
Haberlandt 1902

Innate potential of cells

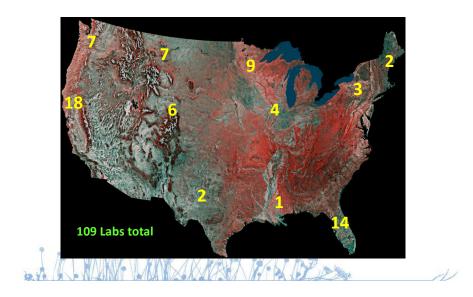

In Vitro Culture: Carly Attempts


Concept of in vitro plant production


Toward Commercial Micropropagation 1950s

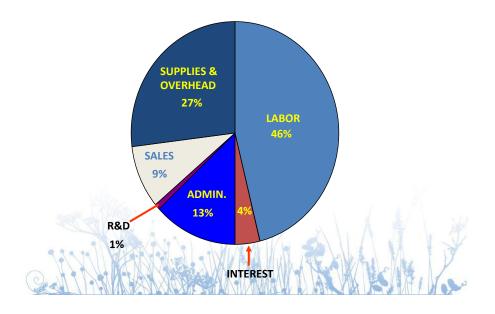

Commercialization of Micropropagation 1960s

Commercialization of Micropropagation 1970s & 1980s



Micropropagation: Advantages for Plant Production

Commercial Micropropagation Labs (2000)



Micropropagation Production in the United States

Foliage Plants		63,695,000	
Greenhouse Flower	rs	11,297,000	- Nor
Perennials		9,448,000	TA
Trees & shrubs		15,294,000	A-CAN'
Vegetables		12,862,000	
Fruits		3,721,000	
Miscellaneous		4,545,000	
ian, 2001)	Total:	120,862,000	
	Perennials Trees & shrubs Vegetables Fruits	Greenhouse Flowers Perennials Trees & shrubs Vegetables Fruits Miscellaneous	Greenhouse Flowers 11,297,000 Perennials 9,448,000 Trees & shrubs 15,294,000 Vegetables 12,862,000 Fruits 3,721,000 Miscellaneous 4,545,000 Total: 120,862,000

ERAN ///

USA Commercial Micropropagation Laboratory Costs

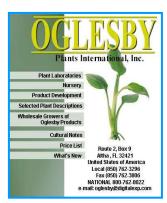
Commercial Micropropagation: A Global Industry

- Israel
- Japan
- India
- Malaysia
- Mexico

es.

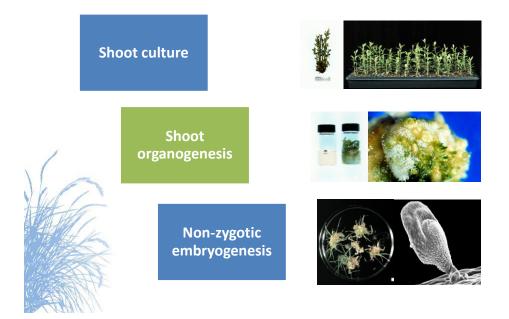
- Central America
- South America

Strive to reduce labor costs!



Bangkok Flower Center Thailand

Oglesby Plants International, Inc.

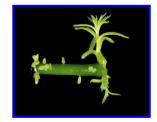


Oglesby Plants International, Inc.

Micropropagation Methods

Micropropagation Methods

1. Shoot Culture


 Production of axillary shoots followed by rooting of individual shoots (pre-existing meristems on explants)

Micropropagation Methods

2. Shoot Organogenesis

- Production of adventitious shoots followed by rooting of individual shoots (shoot production does not originate from pre-existing meristems on the explants)
- Direct Shoot Organogenesis
 Indirect Shoot Organogenesis

Direct Shoot Organogenesis

Indirect Shoot Organogenesis

Micropropagation Methods

- 3. Non-zygotic Embryogenesis
- Production of non-zygotic embryos from single cells

Grape non-zygotic embryo

```
Non-zygotic embryogenesis
```

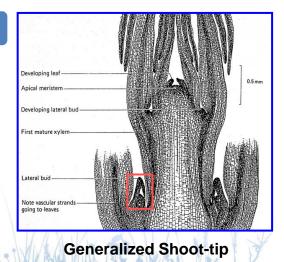
- Direct Non-zygotic Embryogenesis
- Indirect Non-zygotic Embryogenesis

Shoot Culture

Method Overview

• Clonal in vitro propagation by repeated enhanced formation of axillary shoots from shoot-tips or lateral meristems following culture on media supplemented with plant growth regulators, usually cytokinins. Shoots produced are either rooted first in vitro or rooted and acclimatized ex

vitro

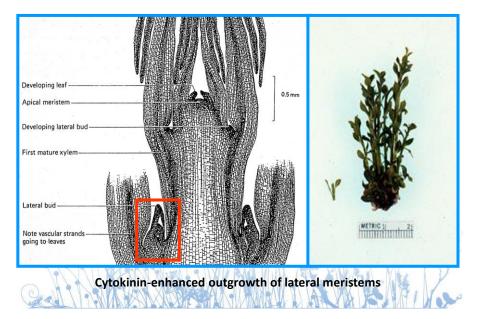

Concept

• Micropropagation from pre-existing meristems

Shoot Meristems

Background

- Axillary bud in leaf axil
- Each encloses a shoot-tip
- Each bud has potential to develop into a shoot
- Lateral bud outgrowth suppressed (apical dominance)
- Hormone interactions
- Pathogens often not present in apical meristems


Important Discovery

Wickson, M. and K.V. Thimann. 1958. The antagonism of auxin and kinetin in apical dominance. Physiologia Plantarum 11:62-74.

Apical dominance along pea stems could be suppressed by application of cytokinin

Basis for micropropagation via enhanced axillary branching (shoot culture) Cytokinin in medium disrupts apical dominance and enhances outgrowth

Shoot Culture

Shoot Culture

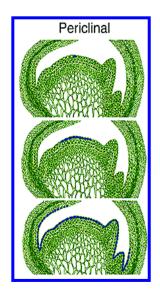
Most widely used method for commercial micropropagation

Relatively high genetic stability in the plants produced

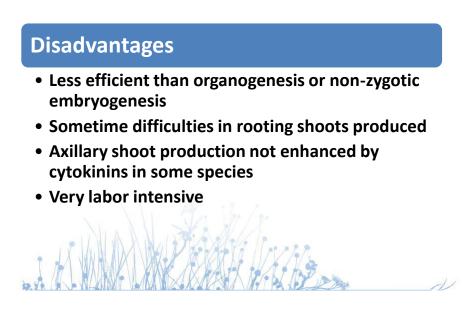
Shoot Culture

Advantages

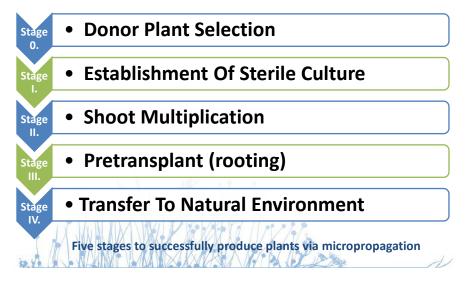
- Reliable rates and consistency of shoot multiplication
- 3 8 fold multiplication rate per month
- Pre-existing meristems are least susceptible to genetic changes


Shoot Culture

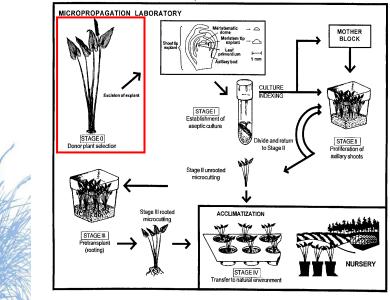
Advantages


• Periclinal chimeras can be propagated

inwheel African Viole (chimera)



Shoot Culture



Micropropagation Stages

Shoot Culture

STAGE 0. Donor Plant Selection & Preparation

Shoot Culture

Stage 0. Donor Plant Selection & Preparation

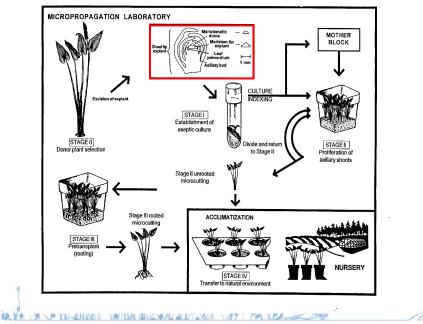
 Explant quality & responsiveness in vitro influenced by phytosanitary/physiological conditions of donor plant

STAGE 0. Donor Plant Selection & Preparation

Donor Plant Preparation Tips

- Maintain specific pathogen-tested stock plants
- Clean controlled conditions allowing active growth
- Low humidity, drip irrigation, antibiotic sprays

STAGE 0. Donor Plant Selection & Preparation


Donor Plant Preparation

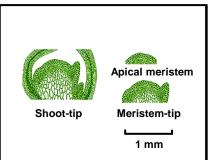
- Modification of physiological status
 - Trim to stimulate lateral shoots
 - Pretreat with cytokinins or gibberellic acid

• Use forcing solution: 2% sucrose, 200 mg/l 8-hydroxyquinoline citrate and growth regulators

Light/temperature pretreatments

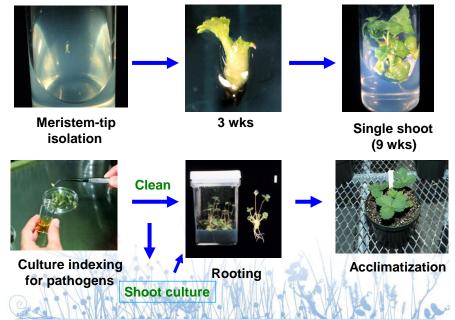
STAGE I. Establishment of Aseptic Culture

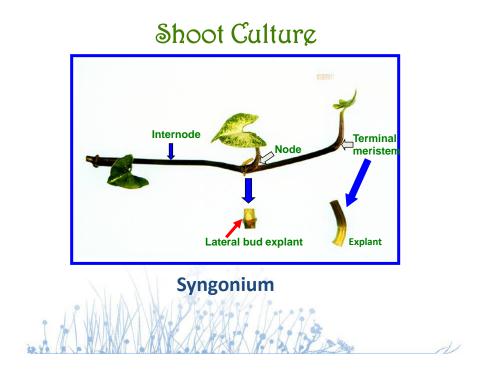
Meristem and Meristem-tip Culture

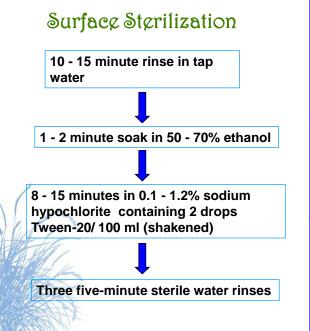

Techniques used specifically to produce pathogen eradicated plants not directly used

for propagation

Meristem Culture
Culture of apical meristem dome

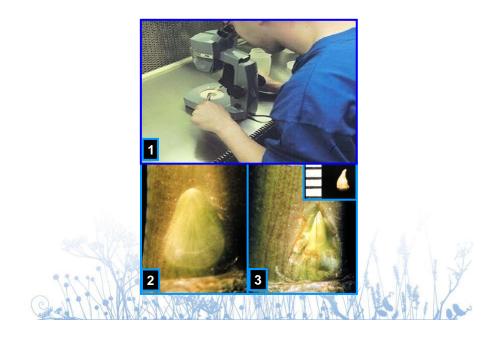

0.1 - 0.2 mm diameter 0.2 mm in length

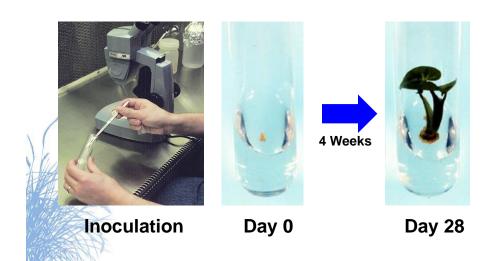

Meristem-tip Culture



Culture of larger (0.2 - 0.5 mm long) meristem-tip explants that include apical meristem plus several subtending leaf primordia

Meristem and Meristem-tip Culture





Shoot-tip Isolation

STAGE I. Culture Initiation

STAGE I. Culture Medium

Murashige & Skoog mineral salts

30 g/l sucrose

100 mg/l myo-inositol

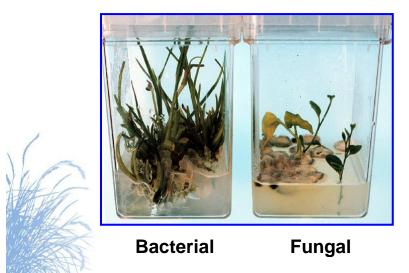
0.4 mg/l thiamine

0.5 mg/l cytokinin (2-iP)

0.1 mg/liter auxin (IAA)

7 g/l agar or Phytagel

pH = 5.7


Smaller explants require more complex medium

STAGE I. Culture Indexing

STAGE I. Culture Contamination

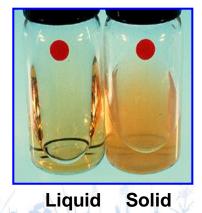
STAGE I. Culture Contamination


Many times what you "see" is not what you get!

The "EBD"

 Need to screen (index) for the presence of <u>cultivable</u> contaminants

STAGE I. Culture Indexing


STAGE I. Culture Indexing Medium

- Beef Extract
- Glucose
- Lab-Lemco Powder
- Murashige & Skoog Medium
- Peptone
- Sodium Chloride
- Sucrose

Qual

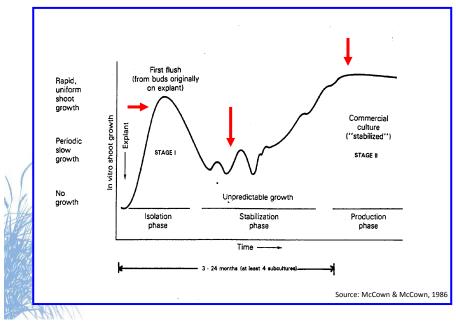
• Yeast Extract

STAGE I. Culture Indexing Medium

STAGE I. Establishment of Aseptic Culture

So now we have a sterile (indexed) Stage I culture

1 Maria


STAGE I. Establishment of Aseptic Culture

Misconception that shoot multiplication occurs rapidly immediately following inoculation of explant *in vitro*

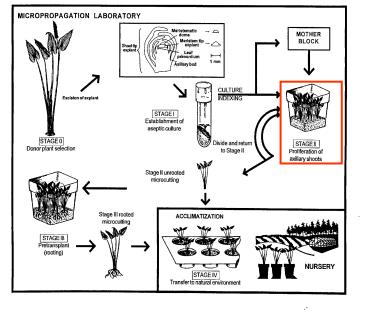
Three important phases of explant establishment

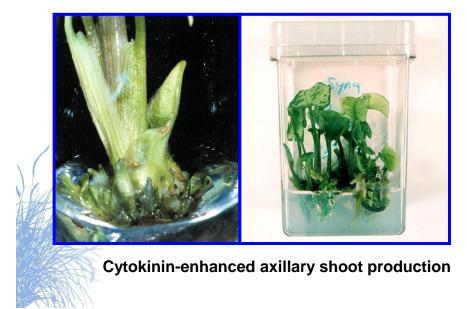
STAGE I. Culture Stabilization

Mother Block Concept

Mother Block

- A slowly multiplying, indexed and stabilized set of cultures
- Serve as source of cultures (explants) for Stage II multiplication


Ord



Mother Block Room

A Bay

STAGE II. Shoot Multiplication

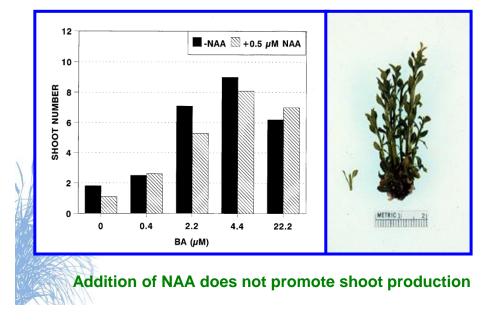
STAGE II. Shoot Multiplication

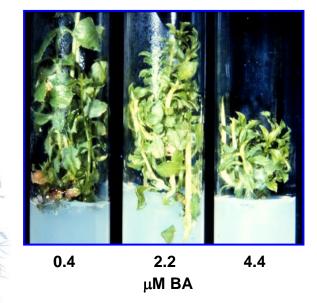
Repeated enhanced axillary shoot production

Presence of higher cytokinin level in medium to disrupt apical dominance

- 2-isopentenyladenine (2-iP)
- Benzyladenine (BA)
- Kinetin (KIN)
- Thidiazuron (Dropp®)

Stage II selection of cytokinin type and concentration determined by:

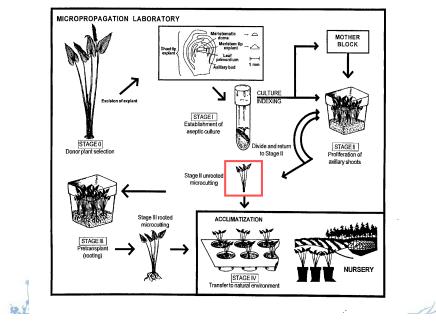

- Shoot multiplication rate
- Length of shoot produced
- Frequency of genetic variability
- Cytokinin effects on rooting and survival


STAGE II. Shoot Multiplication

Auxin may be added to enhance shoot production/elongation (graph)

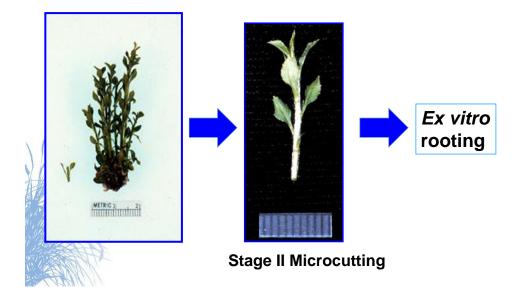

- α -indole-3-acetic acid (IAA)
- 1- naphthaleneacetic acid (NAA)
- indolebutyric acid (IBA)

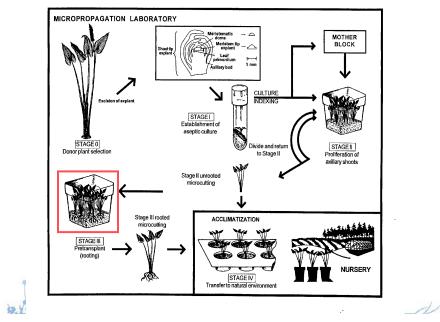
STAGE II. Shoot Multiplication


STAGE II. Shoot Multiplication

Subculture shoot clusters at 4 - 5 week intervals

3 - 8 fold increase in shoot numbers (4.3 x 10⁷ shoots/explant/year)


Number of subcultures possible is species/cultivar dependent:


- Frequency of genetic variability
- Some subcultured 8 48 months
- Boston fern 3 subcultures maximum
- Adventitious shoot formation (mixed culture)

STAGE II. Shoot Microcuttings

STAGE II. Shoot Microcuttings

STAGE III. Pretransplant (Rooting)

STAGE III. Pretransplant (Rooting)

Preparation of Stage II shoots/shoot clusters for transfer to soil (prehardening)

Elongation of shoots prior to ex vitro rooting

Fulfilling dormancy requirements of storage organs

STAGE III. Pretransplant (Rooting)

Adventitious rooting of individual shoots or clusters *in vitro*

Stage III rooting is not usually desirable

- Very expensive 35 75% of total production cost
- In vitro formed roots not well-developed
- Roots easily damaged during transplanting
- Numerous factors influence in vitro rooting

Factors Important To In Vitro Rooting

STIMULATORY MEDIUM COMPONENTS COMMENTS

1. AUXINS

indole-3-acetic acid [IAA] indole-3-butyric acid [IBA] α-naphthaleneacetic acid [NAA]

Dosage effect (Conc. x time) 0.05 - 10 mg/liter for (days - weeks) or 50 - 100 mg/liter (sec - hours)

2. HIGH SUGAR/ NITROGEN RATIO

Effect depends on mineral medium

3. PHENOLS

Phloroglucinol

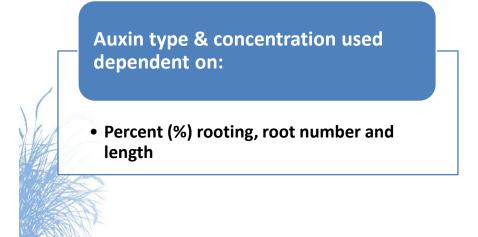
May stimulate rooting (species dependent)

Factors Important To In Vitro Rooting

STIMULATORY MEDIUM COMPONENTS COMMENTS

4. ACTIVATED CHARCOAL

May reduce light in medium or absorb inhibitory compounds



Factors Important To In Vitro Rooting

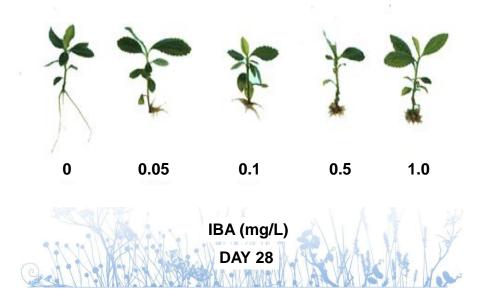
INHIBITORY MEDIUM COMPONENTS COMMENTS

1. CYTOKININS	Common observation. Eliminated in rooting medium
2. GIBBERELLINS	Inhibit root formation
3. HIGH IONIC STRENGTH OF MEDIUM	Confounded by effects of individual nutrients
4. AGAR	Exact cause unknown; agar may be impure and variable in content

STAGE III. Pretransplant (Rooting)

Auxin Effects on In Vitro Stage III Rooting¹

Treatment IBA (mg/L)	% Rooting	Root Number	Root length (mm)
0	37	2.4	23.3
0.05	43	3.5	18.1
0.1	55	4.1	14.2
0.5	71	5.7	6.5
1.0	84	7.1	4.3

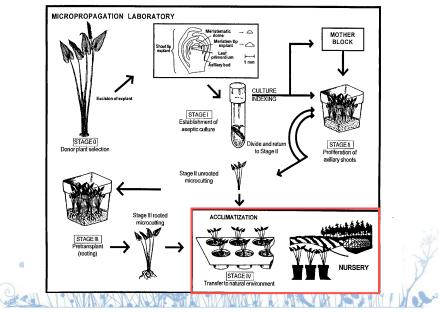

¹Rooting responses of 10 mm microcuttings of *Aronia arbutifolia* after 28 days

Treatment IBA (mg/L)	% Rooting	Root Number	Root length (mm)
0	37	2.4	23.3
0.05	43	3.5	18.1
0.1	55	4.1	14.2
0.5	71	5.7	6.5
1.0	84	7.1	4.3

Auxin Effects on In Vitro Stage III Rooting¹

¹Rooting responses of 10 mm microcuttings of *Aronia arbutifolia* after 28 days

Stage III Rooting



STAGE III: Pretransplant (Rooting)

Auxin type and concentration used dependent on: Percent (%) rooting, root number and length

- Auxin effects on post-transplant growth
 - NAA used in Stage III may retard Stage IV growth

STAGE IV. Transfer to Natural Environment

Ultimate success of shoot culture depends on ability to re-establish vigorously growing quality plants from *in vitro* to *ex vitro* conditions

High humidity & low light In vitro

Lower humidity & high light Ex vitro

STAGE IV. Transfer to Natural Environment

ACCLIMATIZATION:

 Process whereby plants physiologically and anatomically adjust from in vitro to ex vitro cultural and environmental conditions

Two reasons micropropagated plants may be difficult to re-establish *ex vitro*:

• 1. Low photosynthetic competence (heterotrophic nutrition)

2. Poor control of water loss

1. Low Photosynthetic Competence

- Plants largely heterotrophic (may be photomixotrophic)
- Poorly differentiated leaf structure
- Poorly developed chloroplasts
- Poor CO₂ fixation

STAGE IV. Transfer to Natural Environment

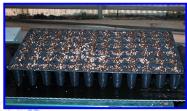
"Lifeboat Effect"

 Need for carbohydrate reserve (starch) in stems and leaves during initial acclimatization

Example

Cauliflower begins carbon fixation 7 days posttransplant

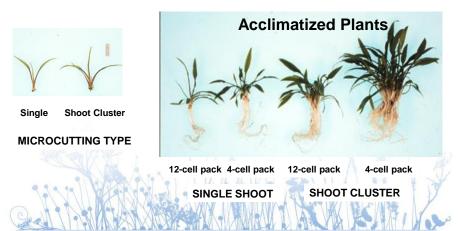
14 days required for positive carbon balance


2. Poor Control of Water Loss

- Reduced cuticle (wax) development
- Abnormal stomata development and function
- Non- or marginally functional roots

STAGE IV. Transfer to Natural Environment

3. Other Factors Affecting Acclimatization


- Plant Quality
 - Culture medium carry over effects
 - Bacterial/fungal contamination
- Soil Mix Selection
 - Pasteurized
 - Well drained
 - Dilute fertilizer (150 mg/L N)

STAGE IV. Transfer to Natural Environment 3. Other Factors Affecting Acclimatization & Quality

Container/Medium/Plug Size Considerations

3. Factors Affecting Acclimatization & Quality (cont.)

- Light & Temperature Control
 - Light (photoperiod & intensity)
 - Move plants through one or more intermediate light levels (2-fold increase every 6 14 days)
- Humidity & Moisture Control
 - Near 100% humidity in vitro
 - Humidity gradually decreased

STAGE IV. Transfer to Natural Environment

4. Acclimatization Structures

- Propagation dome
- Humidity tent
- Automatic mist system
- Fog system

Propagation Dome

ADVANTAGES Flexibility Maintains high humidity Easy to use

DISADVANTAGES Heat Buildup Labor intensive

Humidity Tent

ADVANTAGES Inexpensive Heat Buildup Maintains high humidity Must be monitored Easy to construct

Automatic Mist System

ADVANTAGES

Automatic Misting Adjustable misting Lower labor input

DISADVANTAGES Nutrient leaching Algae/fungal buildup

Fog System

te Alt the

ADVANTAGES 100% humidity No nutrient leaching Decrease heat buildup Lowers light levels

Fully acclimatized Syngonium

Micropropagation Videos

- 1. Laboratory Procedures for Tissue Culture: A Beginner's Guide
- 2. Handling Tissue Culture Plants in the Nursery

